Local Uniqueness of the Circular Integral Invariant
نویسندگان
چکیده
This article is concerned with the representation of curves by means of integral invariants. In contrast to the classical differential invariants they have the advantage of being less sensitive with respect to noise. The integral invariant most common in use is the circular integral invariant. A major drawback of this curve descriptor, however, is the absence of any uniqueness result for this representation. This article serves as a contribution towards closing this gap by showing that the circular integral invariant is injective in a neighbourhood of the circle. In addition, we provide a stability estimate valid on this neighbourhood. The proof is an application of Riesz–Schauder theory and the implicit function theorem in a Banach space setting.
منابع مشابه
On the Circular Area Signature for Graphs
The representation of curves by integral invariant signatures is an important step inshape recognition and classification. Integral invariants are preferred over their differential counter-parts due to their robustness with respect to noise. However, in contrast to differential invariants ofcurves, it is currently unknown whether integral signatures offer unique representations of c...
متن کاملExistence and uniqueness of the solution of nonlinear fuzzy Volterra integral equations
In this paper the fixed point theorem of Schauder is used to prove the existence of a continuous solution of the nonlinear fuzzy Volterra integral equations. Then using some conditions the uniqueness of the solution is investigated.
متن کاملOn existence and uniqueness of solutions of a nonlinear Volterra-Fredholm integral equation
In this paper we investigate the existence and uniqueness for Volterra-Fredholm type integral equations and extension of this type of integral equations. The result is obtained by using the coupled fixed point theorems in the framework of Banach space $ X=C([a,b],mathbb{R})$. Finally, we give an example to illustrate the applications of our results.
متن کاملThe Study of Some Boundary Value Problems Including Fractional Partial Differential Equations with non-Local Boundary Conditions
In this paper, we consider some boundary value problems (BVP) for fractional order partial differential equations (FPDE) with non-local boundary conditions. The solutions of these problems are presented as series solutions analytically via modified Mittag-Leffler functions. These functions have been modified by authors such that their derivatives are invariant with respect to fractional deriv...
متن کاملIntegral Properties of Zonal Spherical Functions, Hypergeometric Functions and Invariant
Some integral properties of zonal spherical functions, hypergeometric functions and invariant polynomials are studied for real normed division algebras.
متن کامل